Refine Your Search

Topic

Affiliation

Search Results

Technical Paper

Effects of Environmental Parameters on Real-World NOx Emissions and Fuel Consumption for Heavy-Duty Diesel Trucks Using an OBD Approach

2018-09-10
2018-01-1817
OBD (On-Board Diagnostic) test system is applied to research influences of environmental parameters (altitude and environment temperature) on real-world NOx emission and fuel consumption for heavy-duty diesel trucks in this paper. The research results indicate that altitude and environment temperature have great influence on NOx emission rate and fuel consumption. High altitude in range of 3000~4000 m results in NOx emission rate is lower than low and moderate temperature because of air intake amount decreasing. However the fuel consumption rate is higher than lower altitude because altitude influences real-time changes of air inflow and combustion conditions in the cylinder of the engine. NOx emission rate and fuel consumption is more stable at different vehicle speed, VSP and RPM at high altitude, and NOx emission rate fluctuate dramatically at low and moderate altitude. The fuel consumption rate is higher at 10~20 °C than that at lower and higher temperature.
Technical Paper

Effects of Ethanol in Ester-Ethanol-Diesel Blended Fuels on Spray Behavior and PM Emission

2006-04-03
2006-01-0236
The ethanol has potential to be a renewable alternative fuel for internal combustion engines and contributes to lower global CO2 emission. In this study, vegetable methyl ester is added in the ethanol-diesel fuel to prevent separation of the ethanol from diesel, thus the ethanol blend ratio can be set up to 30% in volume. This work pays more attention on its spray, effects of the ethanol percentage on the detailed PM components. To investigate the spray behavior of ethanol, diesel and their blends, experiments in a constant volume chamber were carried out combining numerical simulation. Properties of the ethanol-diesel blended fuels were obtained through some measurements and empirical calculations. The breakup sub-model, Wave-KH model considering the blend fuel properties were adopted in an engine simulation code KIVA-3V. The simulation had a good agreement with experiments.
Technical Paper

Effects of Fuel Injection Characteristics on Heat Release and Emissions in a DI Diesel Engine Operated on DME

2001-09-24
2001-01-3634
In this study, an experimental investigation was conducted using a direct injection single-cylinder diesel engine equipped with a test common rail fuel injection system to clarify how dimethyl ether (DME) injection characteristics affect the heat release and exhaust emissions. For that purpose the common rail fuel injection system (injection pressure: 15 MPa) and injection nozzle (0.55 × 5-holes, 0.70 × 3-holes, same total holes area) have been used for the test. First, to characterize the effect of DME physical properties on the macroscopic spray behavior: injection quantity, injection rate, penetration, cone angle, volume were measured using high-pressure injection chamber (pressure: 4MPa). In order to clarify effects of the injection process on HC, CO, and NOx emissions, as well as the rate of heat release were investigated by single-cylinder engine test. The effects of the injection rate and swirl ratio on exhaust emissions and heat release were also investigated.
Technical Paper

Effects of Octane Number and Sensitivity on Combustion of Jet Ignition Engine

2022-03-29
2022-01-0435
Octane number (ON) and octane sensitivity (S), the fuel anti-knock indices, are critical for the design of advanced jet ignition engines. In this study, ten fuels with different research octane number (RON) and varying S were formulated based on ethanol reference fuels (ERFs) to investigate the effect of S on combustion of jet ignition engine. To fully understand S effects, the combustion characteristics under EGR dilution and lean burn were further investigated. The results indicated that increasing S resulted in higher reactivity with shorter ignition delay and combustion duration. The increase of reactivity led to heavier knocking intensity. The competition between the flame speed and the reactivity of the mixture determined the auto-ignition fraction of mixture and the knocking onset crank angle as S varied. Medium S (S=3) was helpful to improve the combustion speed, reduce the auto-ignition fraction of mixture and retard the knocking onset crank angle.
Journal Article

Effects of Perforation Shapes on Water Transport in PEMFC Gas Diffusion Layers

2019-04-02
2019-01-0380
Water management, particularly in the gas diffusion layers (GDL), plays an important role in the performance and reliability of the proton exchange membrane fuel cells (PEMFCs). In this study, a two-phase multiple-relaxation-time (MRT) lattice Boltzmann method (LBM) is employed to simulate water transport in a reconstructed GDL and the effect of perforation shapes is investigated. The revised pseudopotential multiphase model is adopted to realize high-density ratio, good thermodynamic consistency, adjustable surface tension and high contact angle. The transport characteristics are analyzed in both vertical and horizontal transport directions. The LBM simulation provides detailed results in mesoscale and indicates that the surface tension dominates the process of water transport in the perforated GDL, which exhibits unexpectedly similarities in the vertical and horizontal transport.
Technical Paper

Energetic Macroscopic Representation Based Energy Management Strategy for Hybrid Electric Vehicle Taking into Account Demand Power Optimization

2017-10-08
2017-01-2208
To further explore the potential of fuel economy for hybrid electric vehicle (HEV), a methodology of demand power optimization is proposed. The fuel consumption depends not only on the EMS, but also on the way to operate vehicle. A control strategy to adjust driver’s demand before power splitting is necessary. To get accurate and reliable control strategy, two aspects are the most important. First, a rigorous and organized modeling approach is a base to describe complicated powertrain system of HEV. The energetic macroscopic representation (EMR) is a graphical synthetic description of electromechanical conversion system based on energy flow. A powertrain architecture of HEV is described explicitly via the EMR. Second, the effectiveness of EMS and the reasonability of driving operations are vital.
Technical Paper

Energy Management and Design Optimization for a Power-Split, Heavy-Duty Truck

2017-10-08
2017-01-2450
Power-split configuration is highlighted as the most popular concept for full hybrid electric vehicles (HEV). However, the energy management and design of power-split heavy duty truck under Chinese driving conditions still need to be investigated. In this paper, the parametric design, a rule-based control strategy and an equivalent consumption minimization strategy (ECMS) for the power-split heavy duty truck are presented. Besides, the influence of a penalty factor also discussed under ECMS algorithm. Meanwhile, two different methods to search the engine operation point have been proposed and the reason of different economy performance is presented by using energy flow chart. And the simulation results show both fuel consumption can satisfy the second phase fuel consumption standard and the third phase fuel consumption standard which will be implemented in 2020, under C-WTVC (Chinese-World Transient Vehicle Cycle).
Technical Paper

Evolution and Future Development of Vehicle Fuel Specification in China

2021-09-21
2021-01-1201
Fuel quality has a significant influence on the combustion engine operation. In recent years the increasing concerns about environmental protection, energy saving, energy security and the requirements of protecting fuel injection and aftertreatment systems have been major driving forces for the Chinese fuel specification evolution. The major property changes in the evolution of Chinese national gasoline and diesel standards are introduced and the reasons behind these changes are analyzed in this paper. The gasoline fuel development from State I to State VI-B involved a decrease of sulfur, manganese, olefins, aromatics and benzene content. The diesel fuel quality improvement from State I to State VI included achieving low sulfur fuels and a cetane number (CN) increase. Provincial fuel standards, stricter than corresponding national standards, were implemented in economically developed areas in the past.
Technical Paper

Experimental Investigation of Improving Homogeneous Charge Induced Ignition (HCII) Combustion at Medium and High Load by Reducing Compression Ratio

2017-03-28
2017-01-0765
This research focuses on the potential of Homogeneous Charge Induced Ignition (HCII) combustion meeting the Euro V emission standard on a heavy-duty multi-cylinder engine using a simple after-treatment system. However, in our previous studies, it was found that the gasoline ratio was limited in HCII by the over-high compression ratio (CR). In this paper, the effects of reducing CR on the performances of HCII at medium and high loads were explored by experimental methods. It was found that by reducing CR from 18:1 to 16:1 the peak in-cylinder pressure and the peak pressure rise rate were effectively reduced and the gasoline ratio range could be obviously extended. Thus, the combustion and emission characteristics of HCII at medium and high loads were noticeably improved. Soot emissions can be significantly reduced because of the increase of premixed combustion ratio. The reduction could be over 50% especially at high load and high speed conditions.
Technical Paper

Experimental Study of Catalyzed Diesel Particulate Filter with Exhaust Fuel Injection System for Heavy-Duty Diesel Engines

2014-04-01
2014-01-1496
The diesel particulate filter (DPF) is an effective technology for particulate matter (PM) and particle number (PN) reduction. On heavy-duty diesel engines, the passive regeneration by Diesel Oxidation catalysts (DOC) and catalyzed DPFs (CDPF) is widely used for its simplicity and low cost, which is generally combined with the active regeneration of exhaust fuel injection. This study investigated a DOC-CDPF system with exhaust fuel injection upstream of the DOC. The system was integrated with a 7-liter diesel engine whose engine-out PM emission was below the Euro IV level and tested on an engine dynamometer. PM and PN concentrations were measured based on the Particle Measurement Programme (PMP), and the number/size spectrum for particles was obtained by a Differential Mobility Spectrometer (DMS). The filtration efficiency of DPF on PN was higher than 99% in ESC test, while the efficiency on PM was only 58%.
Technical Paper

Experimental Study of Lean Mixture Combustion at Ultra-High Compression Ratios in a Rapid Compression Machine

2018-04-03
2018-01-1422
In order to meet increasingly stringent fuel consumption and emission regulations, more attentions are paid to improve engine efficiency. A large amount of energy-saving technologies have been applied in automotive field especially in gasoline engines. It is well known that lean burn and ultra-high compression ratio technologies are two basic and important methods to increase efficiency. In this paper, a rapid compression machine was employed to study combustion process of lean iso-octane mixture at ultra-high compression ratios (16 to 19:1). Regardless of flammability of the mixture, spark was triggered at the timing right after the end of compression, then, the flame propagation and/or auto-ignition can be recorded using high-speed photography simultaneously. The effects of equivalence ratio (φ), compression ratio (ε), dilution ratio, and effective temperature (Teff) on the combustion process was investigated.
Technical Paper

Experimental Study on Ammonia-Methanol Combustion and Emission Characteristics in a Spark Ignition Engine

2024-04-09
2024-01-2820
Ammonia and methanol are both future fuels with carbon-neutral potential. Ammonia has a high octane number, a slow flame speed, and a narrow ignition limit, while methanol has a fast flame speed with complementary combustion characteristics but is more likely to lead to pre-ignition and knock. In this paper, the combustion and emission characteristics of ammonia-methanol solution in a high compression ratio spark ignition engine are investigated. The experimental results show that the peak in-cylinder pressure and peak heat release rate of the engine when using ammonia-methanol solution are lower and the combustion phase is retarded compared with using methanol at the same spark timing conditions. Using ammonia-methanol solution in the engine resulted in a more ideal combustion phase than that of gasoline, leading to an increase in indicated thermal efficiency of more than 0.6% and a wider range of efficient operating conditions.
Technical Paper

Feasibility Study of Using WLTC for Fuel Consumption Certification of Chinese Light-Duty Vehicles

2018-04-03
2018-01-0654
This paper presents the feasibility study of using the worldwide harmonized light vehicles test cycle (WLTC) for the fuel consumption certification of Chinese Light-duty (LD) vehicles. First, the key steps and the technical routes of the development process of WLTC are summarized. Second, the operation data of 3082 vehicles in 41 typical cities of China are collected throughout the year. Then, the characteristics of the acquisition data are compared with WLTC. Finally, the feasibility of using WLTC for fuel consumption certification of Chinese LD vehicles is analyzed in three aspects, includes operation characteristics, weighting factors and fuel consumption. The result shows that there is obvious difference between WLTC and Chinese reality, and WLTC is not suitable for the fuel consumption certification of Chinese LD vehicles.
Technical Paper

Fuel Consumption Analysis and Optimizing of a Heavy Duty Dual Motor Coaxial Series-Parallel Hybrid Lorry under C-WTVC

2017-10-08
2017-01-2359
Energy saving is becoming one of the most important issues for the next generation of commercial vehicles. The fuel consumption limits for commercial vehicles in China have stepped into the third stage, which is a great challenge for heavy duty commercial vehicles. Hybrid technology provides a promising method to solve this problem, of which the dual motor coaxial series parallel configuration is one of the best options. Compared with parallel configuration, the powertrain can not only operate in pure electric or parallel mode, but also can operate in series mode, which shows better flexibility. In this paper, regulations on test cycle, fuel consumption limits and calculation method of the third stage will be introduced in detail. Then, the quasi-static models of the coaxial series parallel powertrain with/without gearbox under C-WTVC (China worldwide transient vehicle cycle) are built. The control strategies are designed based on engine and motor performance.
Technical Paper

Fuel Consumption and NOx Emission Prediction of Heavy-Duty Diesel Vehicles under Different Test Cycles and Their Sensitivities to Driving Factors

2020-09-15
2020-01-2002
Due to the rapid development of road infrastructure and vehicle population in China, the fuel consumption and emission of on-road vehicles tested in China World Transient Vehicle Cycle (C-WTVC) cannot indicate the real driving results. But the test results in China Heavy-duty Commercial Vehicle Test Cycle-Coach (CHTC-C) based on the road driving conditions in China are closer to the actual driving data. In this paper, the model for predicting the performance of heavy-duty vehicles is established and validated. The fuel consumption and NOx emission of a Euro VI heavy-duty coach under C-WTVC and CHTC-C tests are calculated by employing the developed model. Furthermore, the fuel consumption of the test coach is optimized and its sensitivity to the driving factors is analyzed.
Technical Paper

Fuel Economy Analysis of Periodic Cruise Control Strategies for Power-Split HEVs at Medium and Low Speed

2018-04-03
2018-01-0871
Hybridization of vehicles is considered as the most promising technology for automakers and researchers, facing the challenge of optimizing both the fuel economy and emission of the road transport. Extensive studies have been performed on power-split hybrid electric vehicles (PS-HEVs). Despite of the fact that their excellent fuel economy performance in city driving conditions has been witnessed, a bottle neck for further improving the fuel economy of PS-HEVs has been encountered due to the inherent engine-generator-motor power circulation of the power-split system under medium-low speed cruising scenarios. Due to the special mechanical constraints of the power-split device (PSD), the conventional periodic cruising strategy like Pulse and Glide cannot be applied to PS-HEVs directly.
Technical Paper

Fuel Economy Regulations and Technology Roadmaps of China and the US: Comparison and Outlook

2018-09-10
2018-01-1826
In order to address the increasing energy and environmental concerns, China and the US both launched the fuel economy regulations and aim to push the development of technology. In this study, the stringency of CAFC and CAFE regulations and the technology development of two countries are compared. Besides, the optimal technology pathways of America and automakers for the compliance of CAFE regulations are calculated based on the modified VOLPE model, and the results are used as reference for China. The results indicate that the annual regulation improvement rates of China is higher than America and the AIR of China 2015-2020 regulation reaches 6.2% and is the most stringent phase in 10 years from 2015 to 2025. From the perspective of technology, there are still big gaps between China and the US in the applications of advanced fuel saving technologies.
Technical Paper

Hierarchical Control Strategy of Predictive Energy Management for Hybrid Commercial Vehicle Based on ADAS Map

2023-04-11
2023-01-0543
Considering the change of vehicle future power demand in the process of energy distribution can improve the fuel saving effect of hybrid system. However, current studies are mostly based on historical information to predict the future power demand, where it is difficult to guarantee the accuracy of prediction. To tackle this problem, this paper combines hybrid energy management with predictive cruise control, proposing a hierarchical control strategy of predictive energy management (PEM) that includes two layers of algorithms for speed planning and energy distribution. In the interest of decreasing the energy consumed by power components and ensuring transportation timeliness, the upper-level introduces a predictive cruise control algorithm while considering vehicle weight and road slope, planning the future vehicle speed during long-distance driving.
Technical Paper

Hierarchical Framework for Adaptive Cruise Control with Model Predictive Control Method

2017-09-23
2017-01-1963
Adaptive cruise control (ACC), as one of the advanced driver assistance systems (ADAS), has become increasingly popular in improving both driving safety and comfort. Since the objectives of ACC can be multi-dimensional, and often conflict with each other, it is a challenging task in its control design. The research presented in this paper takes ACC control design as a constrained optimization problem with multiple objectives. A hierarchical framework for ACC control is introduced, aimed to achieve optimal performance on driving safety and comfort, speed and/or distance tracking, and fuel economy whenever possible. Under the hierarchical framework, the operational mode is determined in the upper layer, in which a model predictive control (MPC) based spacing controller is employed to deal with the multiple control objectives. On the other hand, the lower layer is for actuator control, such as braking and driving control for vehicle longitudinal dynamics.
Journal Article

High Speed Imaging Study on the Spray Characteristics of Dieseline at Elevated Temperatures and Back Pressures

2014-04-01
2014-01-1415
Dieseline combustion as a concept combines the advantages of gasoline and diesel by offline or online blending the two fuels. Dieseline has become an attractive new compression ignition combustion concept in recent years and furthermore an approach to a full-boiling-range fuel. High speed imaging with near-parallel backlit light was used to investigate the spray characteristics of dieseline and pure fuels with a common rail diesel injection system in a constant volume vessel. The results were acquired at different blend ratios, and at different temperatures and back pressures at an injection pressure of 100MPa. The penetrations and the evaporation states were compared with those of gasoline and diesel. The spray profile was analyzed in both area and shape with statistical methods. The effect of gasoline percentage on the evaporation in the fuel spray was evaluated.
X